- Xét tam giác ABC vuông tại A có AM là đường cao nên
MB.MC = MA2 (hệ thức lượng trong tam giác vuông)
Lại có AE.AB = AM2 (cmt)
Do đó AE.AB = AC.EM = MB.MC = AM2
ĐỀ 3
Phòng Giáo dục và Đào tạo …..
Đề thi Giữa kì – Năm học 2022 – 2023
Bài thi môn: Toán lớp 9
Thời gian làm bài: 90 phút
Bài 1. (2 điểm) Tính giá trị của biểu thức:
Bài 2.(2 điểm) Cho biểu thức:
1. Rút gọn C;
2. Tìm x để 5/2.
Bài 3.(2 điểm) Giải phương trình
Bài 4.(3,5 điểm) Cho tam giác ABC vuông tại A có đường cao AH. Độ dài BH = 4cm và HC = 6cm.
1. Tính độ dài các đoạn AH, AB, AC.
2. Gọi M là trung điểm của AC. Tính số do góc AMB (làm tròn đến độ).
3. Kẻ AK vuông góc với BM (K ∈ BM). Chứng minh: ΔBKC đồng dạng với ΔBHM.
Bài 5.(0,5 điểm) Cho biểu thức: P = x3 + y3 – 3(x + y) + 2020
Đáp án và Hướng dẫn làm bài
Bài 1.
Bài 2.
Bài 3.
ĐKXĐ: x ≤ -3; x ≥ 3. Vậy nghiệm của phương trình là x = 3 và x = 6.
Bài 4.

1. ΔABC vuông tại A, có đường cao AH.
Áp dụng hệ thức lượng trong tam giác vuông:
2. Do M là trung điểm của AC nên AM = 1/2AC = √15 (cm)
Xét ABM vuông tại A:
3. Xét ΔABM vuông tại A, có AK là đường cao
Áp dụng hệ thức lượng trong tam giác vuông
AB2 = BK.BM (1)
ΔABC vuông tại A, có đường cao AH.
Áp dụng hệ thức lượng trong tam giác vuông
AB2 = BH.BC (2)
Từ (1) và (2) ta có:
Xét ΔBKC và ΔBHM có:
⇒ ΔBKC đồng dạng với ΔBHM (c.g.c) (đpcm)
Bài 5.
ĐỀ 4
Phòng Giáo dục và Đào tạo …..
Đề thi Giữa kì – Năm học 2022 – 2023
Bài thi môn: Toán lớp 9
Thời gian làm bài: 90 phút
Bài 1 (1,5 điểm). Tính giá trị của các biểu thức sau:
Bài 2 (2 điểm). Giải các phương trình sau:
Bài 3 (2,5 điểm). Cho biểu thức:
a) Tính giá trị của A khi a = 16
b) Rút gọn biểu thức P = A/B
c) So sánh P với 1
Bài 4 (3,5 điểm).
1. (1 điểm)
Một chiếc tivi hình chữ nhật màn hình phẳng 75 inch (đường chéo tivi dài 75 inch) vói góc tạo bởi chiều rộng và đường chéo là 53°08′. Hỏi chiếc ti vi ấy có chiều dài, chiều rộng là bao nhiêu? Biết 1 inch = 2,54cm (kết quả làm tròn đến chữ số thập phân thứ nhất).
2. (2,5 điểm)
Cho tam giác EMF vuông tại M có đường cao MI. Vẽ IP vuông góc với ME (P thuộc ME), IQ vuông góc với MF (Q thuộc MF).
a) Cho biết ME = 4cm, sin∠MFE = 3/4. Tính độ dài các đoạn EF, EI, MI.
b) Chứng minh: MP.PE + MQ.QF = MI2
Bài 5 (0,5 điểm).
Tìm giá trị nhỏ nhất của biểu thức sau dây:
Đáp án và Hướng dẫn làm bài
Bài 1.
Bài 2.
Phương trình (*) có nghĩa ⇔ x – 2 ≥ 0 ⇔ x ≥ 2 (2)
Kết hợp (1) và (2) suy ra: x = 2 là điều kiện để phương trình có nghĩa.
Thử lại x = 2 vào phương trình ta có:
(luôn đúng)
Vậy x = 2 là nghiệm.
Bài 3.
a) Thay a = 16 (tm đkxđ) vào A ta được:
Vậy với x = 16 thì A = 5
b) Ta có:
c) So sánh P với 1.
Bài 4.
1.

Màn hình chiếc ti vi là hình chữ nhật ABCD.
Đổi: 75 inch = 190,5cm
Xét tam giác vuông ABD có:
AD = BD. sin53°08′ ≈ 152,4 cm
AB = BD. cos53°08′ ≈ 114,3 cm
2.

Vẽ hình đúng đến câu a)
a) Xét tam giác MEF vuông tại M có:
b) Dùng hệ thức lượng trong tam giác vuông:
+) ΔMIE vuông tại I có: MP.PE = IP2
+) ΔMIF vuông tại I có: MQ.QF = IQ2
+) Xét tứ giác MPIQ có:
nên tứ giác MPIQ là hình chữ nhật
Suy ra IQ = MP.
Vậy: MP.PE + MQ.QF = IP2 + IQ2 = IP2 + MP2 = MI2 ( Định lí Pi-ta-go cho tam giác vuông MIP) – đpcm.
Bài 5.













































































