.
.
.

Trọng tâm là gì? Cách xác định trọng tâm và bài tập có lời giải chi tiết nhất

Trong các kiến thức toán học thì trọng tâm là một trong những khái niệm quan trọng nhất. Nó được ứng dụng phổ biến trong đời sống hàng ngày của con người. Hôm nay chúng ta sẽ cùng đi tìm hiểu rõ hơn về các khái niệm về trọng tâm và cách xác định trọng tâm một cách đơn giản và dễ hiểu nhất nha.

Trọng tâm là gì? Trọng tâm trong toán học là gì?

  • Trọng tâm được hiểu là một vị trí ở giữa của một cái gì đó.
  • Trong toán học trọng tâm là: giao điểm của ba đường trung tuyến của tam giác được xuất phát từ ba đỉnh của tam giác đó.
  • Có rất nhiều định nghĩa về trọng tâm khác nhau trong nhiều lĩnh vực như là: trong tâm của tam giác,trọng tâm của tứ giác, trọng tâm của ngôi nhà, trọng tâm của con đường, trọng tâm của vấn đề, trọng tâm trong vật lý,…

Trọng tâm là gì? Trọng tâm trong toán học là gì?

Trọng tâm trong tam giác là gì?

Trong một tam giác kẻ ba đường trung tuyến xuất phát từ ba đỉnh của tam giác tới trung điểm của cạnh đối diện và điểm giao nhau của ba đường trung tuyến đó chính là trọng tâm của hình tam giác

Trọng tâm trong tam giác là gì?

Tính chất trọng tâm của các hình học

Trọng tâm của tam giác

Khoảng cách từ trọng tâm của tam giác đến đỉnh bằng 2/3 độ dài đường trung tuyến ứng với đỉnh đó.

Tam giác ABC, với các đường trung tuyến AM, BN, CP và trọng tâm G, ta có:

  • GA = 2/3 AM
  • GB = 2/3 BN
  • GC = 2/3 CP

Trọng tâm của tam giác

Trọng tâm của tam giác cân

Tam giác ABC cân tại A, có G là trọng tâm.

Vì tam giác ABC cân tại A nên AG vừa là đường trung tuyến, đường cao và là đường phân giác, từ đó ta suy ra được hệ quả của trọng tâm tam giác cân ABC như sau:

  • Góc BAD bằng góc CAD.
  • Trung tuyến AD vuông góc với cạnh đáy BC.

Trọng tâm của tam giác cân

Trọng tâm của tam giác đều

Tam giác ABC đều, G là giao điểm ba đường trung tuyến, đường cao, đường phân giác.

Vì vậy theo tính chất của tam giác đều ta có G vừa là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC.

Trọng tâm của tam giác đều

Trọng tâm của tam giác vuông

Trọng tâm của tam giác vuông cũng được xác định giống như trọng tâm của tam giác thường.

Tam giác MNP vuông tại M.

3 đường trung tuyến MD, NE, PF giao nhau tại trọng tâm O. Ta có MD là trung tuyến của góc vuông PMN nên MD = 1/2 PN = DP = DN.

Trọng tâm của tam giác vuông

Trọng tâm của tam giác vuông cân

Có tam giác ABC vuông cân tại A và I là trọng tâm. AM là đường trung trực, đường trung tuyến và đường cao của tam giác này nên AM vuông góc với BC.

Mặt khác, vì tam giác ABC vuông cân tại A nên:

AB = AC.

=> BP = CN và BN = AN = CP = AP.

Trọng tâm của tam giác vuông cân

Trọng tâm của tứ giác

Trọng tâm của tứ giác là trung điểm của đoạn thẳng nối trung điểm của hai cạnh đối diện.

Cho tứ giác ABCD có trọng tâm là G ta được :

Tổng vecto GA + GB + GC + GD =0

Nếu ta có tứ giác ABCD có trọng tâm là G và điểm I là trọng tâm của tam giác ABC 

Tổng vecto GA + GB + GC + GD =0 (1) và IA + IB + IC = 0 (2)

=>Từ (1) và (2) => 3GI + GD = 0

Trọng tâm của tứ diện

Trọng tâm tứ diện là giao điểm của bốn đường thẳng nối  từ đỉnh và trọng tâm của tam giác đối diện.

Từ hình ta thấy trọng tâm của tứ diện ABCD chính là điểm G

Cách tìm trọng tâm các hình học chuẩn nhất

Cách tìm trọng tâm hình tam giác

 Trọng tâm của tam giác là khoảng cách từ trọng tâm đến ba đỉnh của tam giác đó. 

Cách 1: Giao điểm 3 đường trung tuyến

Xác định trọng tâm tam giác bằng cách lấy giao điểm của ba đường trung tuyến.

Bước 1: Vẽ tam giác ABC, lần lượt xác định trung điểm của các cạnh AB, BC, CA.

Bước 2: Nối lần lượt các đỉnh đến trung điểm của cạnh đối diện. Nối A với G, B với F, C với E.

Bước 3: Giao điểm I của ba đường trung tuyến là AG, BF, CE là trọng tâm của tam giác ABC.

Cách tìm trọng tâm hình tam giác

Cách 2: Tỉ lệ trên đường trung tuyến

Xác định trọng tâm tam giác dựa trên tỉ lệ đường trung tuyến.

Bước 1: Vẽ tam giác ABC, xác định trung điểm M của cạnh BC.

Bước 2: Nối đỉnh A với trung điểm M, sau đó lấy điểm S sao cho AS = 2/3 AM.

Theo tính chất trọng tâm tam giác thì điểm S chính là trọng tâm tam giác ABC.

Cách tìm trọng tâm hình tam giác

Cách vẽ trọng tâm của tứ diện

Cách 1

Cho tứ diện ABCD. Khi đó, 3 đường thẳng nối trung điểm 3 cặp cạnh chéo nhau đồng quy tại trung điểm mỗi đường. Điểm đó chính là trọng tâm tứ diện ABCD

Cách vẽ trọng tâm của tứ diện

Gọi M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA

Khi đó ta có : MQ,NP lần lượt là đường trung bình của ΔABD và ΔCBD

⇒ MQ//NP ( cùng //BD )

⇒ MQ=NP=BD/2

⇒ MNPQ là hình bình hành

⇒ MP∩NQ tại trung điểm mỗi đường

Tương tự chứng minh cặp cạnh chéo nhau còn lại.

Vậy chứng minh được trọng tâm của tứ diện

Cách 2

Cho tứ diện ABCD có G là trọng tâm của ΔBCD. Trên đoạn AG lấy điểm K sao cho KA=3KG. Khi đó điểm K chính là trọng tâm tứ diện ABCD

Cách vẽ trọng tâm của tứ diện

Ta có:

Vì G là trọng tâm ΔBCD ⇒ GB + GC + GD = 0

KA + KB + KC + KD = KA + (KG + GB) + (KG + GC) + (KG + GD)

= KA + 3KG + (GB + GC + GD)

= KA + 3KG

Mặt khác, vì  KA = 3KG ⇒ KA + 3KG = 0

Vậy K là trọng tâm tứ diện ABCD

Một số bài tập về trọng tâm

Bài 1 Tam giác ABC có trung tuyến AD = 9cm và trọng tâm I. Tính độ dài đoạn AI?

Bài 2: Cho I là trọng tâm của tam giác đều MNP. Chứng minh rằng: IM = IN = IP.

Bài 3: Cho G là trọng tâm của tứ diện vuông OABC ( vuông tại O ). Biết rằng OA=OB=OC=a. Tính độ dài OG

Một số bài tập về trọng tâm

Bài giải

Bài 1:

Một số bài tập về trọng tâm

Ta có I là trọng tâm của tam giác ABC và AD là đường trung tuyến nên AI = (2/3) AD (theo tính chất ba đường trung tuyến của tam giác).

Do đó: AG = (2/3).9 = 6 (cm).

Vậy đọan AI có độ dài 6 cm.

Bài 2:

Một số bài tập về trọng tâm

Gọi trung điểm MN, MP, PN lần lượt là R, O, S.

Khi đó MS, PR, NO đồng quy tại trọng tâm I.

Ta có ∆MNP đều, suy ra:

MS = PR = NO (1).

Vì I là trọng tâm của ∆ABC nên theo tính chất đường trung tuyến:

MI = 2/3 MS, PI = 2/3 PR, NI = 2/3 NO (2).

=>Từ (1) , (2) ⇒ GA = GB = GC.

Bài 3:

Một số bài tập về trọng tâm

Một số bài tập về trọng tâm

Xem thêm:

Như vậy, với những thông tin bổ ích trên. Các bạn đã hiểu hơn về khái niệm về trọng tâm là gì? Cũng như cách xác định trọng tâm? Chúc mọi người học tập thật tốt và áp dụng kiến thức chính xác trong quá trình học tập của mình. 

 

Cha mẹ có thể tham khảo các chương trình đào tạo hiện có tại Bamboo School để chọn cho con môi trường học tập tốt nhất có thể

Facebook
Pinterest

Bài viết liên quan

Đăng ký tư vấn và
Đặt lịch tham quan